
Security review of FluxCD
Technical report

Ref 18-10-21-FLX
Version 1.1
Date 2021
Prepared for FluxCD Team
Prepared by: Dr. David Korczynski, Adam Korczynski
Facilitated by: Open Source Technology Improvement Fund (OSTIF)

This report is licensed under Creative Commons 4.0 (CC BY 4.0)

1 Table of contents

1 Table of contents 1

2 Executive summary 2

3 Project information 3

4 Comments on Flux documentation 4

5 Fuzzing integration 9

6 Review of multi-tenancy access control model 12

7 Issues found 14

© 2021 Ada Logics Ltd.
1

2 Executive summary
This report describes the results of a security assessment and fuzzer development of the
FluxCD repositories made by Ada Logics and funded by the OSTIF.

2.1 Scope of audit:
The following repositories were in scope of the audit:

● https://github.com/fluxcd/flux2
● https://github.com/fluxcd/image-automation-controller
● https://github.com/fluxcd/source-controller
● https://github.com/fluxcd/helm-controller
● https://github.com/fluxcd/image-reflector-controller
● https://github.com/fluxcd/notification-controller
● https://github.com/fluxcd/kustomize-controller
● https://github.com/fluxcd/pkg

The goal of the audit was to:
1. Perform a manual audit of the Flux repositories
2. Integrate fuzzing into the Flux projects
3. Review the documentation of Flux
4. Advice on how to convert the text in https://github.com/fluxcd/flux2/pull/582 into a

security model

2.2 Results
Throughout the review we found many positive elements in that the developers have clearly
spent efforts in security-relevant considerations. However, we also found several issues,
both in the code and in the structure of Flux, that should be improved upon.

The manual review of the source found 22 issues divided into the following severities: 1 high,
3 medium, severity issue, 3 medium severity, 13 low and 5 information. During the manual
audit we also found that the code could be improved across the repositories.

We implemented fuzzers for each of the custom controllers in the project and also performed
an initial integration with OSS-Fuzz. The fuzzers found several issues and also helped find
inconsistent code patterns in Flux.

Our review of the documentation is that the documentation is often complicated to grasp.
The documentation is mainly composed of examples, which complicates the process of
getting a conceptual understanding of Flux. We also found that the security-documentation is
lacking, e.g. the security considerations of adopting Flux, the threat model and attack
surface, and also documentation about the access control system.

We found the text in https://github.com/fluxcd/flux2/pull/582 to present ideas that will improve
the security posture of Flux, but the text is in need of work to convert it into a proper security
model. The current text leaves out many questions, mixes design and implementation and
does not outline a clear problem for the new security model to solve.

© 2021 Ada Logics Ltd.
2

https://github.com/fluxcd/flux2
https://github.com/fluxcd/image-automation-controller
https://github.com/fluxcd/source-controller
https://github.com/fluxcd/helm-controller
https://github.com/fluxcd/image-reflector-controller
https://github.com/fluxcd/notification-controller
https://github.com/fluxcd/kustomize-controller
https://github.com/fluxcd/pkg
https://github.com/fluxcd/flux2/pull/582
https://github.com/fluxcd/flux2/pull/582

3 Project information

3.1 Document history

Version Date Details

1.0 08/10/2021 First version presented to Flux team

1.1 18/10/2021 Flux team comments taken into account.

3.2 Contacts
Ada Logics

Contact Position Email address

David Korczynski Security Researcher david@adalogics.com

Adam Korczynski Security engineer adam@adalogics.com

Open Source Technology Improvement Fund

Contact Email address

Derek Zimmer derek@ostif.com

Amir Montazery amir@ostif.org

Flux team

Contact Email address

Daniel Holbach daniel@weave.works

Michael Bridgen michael@weave.works

Hidde Beydals hidde@weave.works

Stefan Prodan stefan@weave.works

Somtochi Onyekwere somtochi@weave.works

Tamao Nakahara tamao@weave.works

Philip Lane philip.lane@gmail.com

Aurel Canciu aurelcanciu@gmail.com

© 2021 Ada Logics Ltd.
3

4 Comments on Flux documentation
In this section we go over our review of the Flux documentation from a Security engineer’s
perspective.

4.1 Informational comments on documentation
We have found the documentation of Flux to be vast and extensive. One of the core
approaches that the documentation takes to convey the information about Flux is through
examples and use-cases. This is good in that the reader can quickly extract templates that
may reflect the need of the reader.

However, one of the potential downsides of an extensive documentation rooted in examples
is that the documentation becomes dispersed and even too extensive, which can make the
reader wander and get lost in specifics. In such a scenario it becomes difficult to extract a
holistic conceptual understanding of Flux. For example, since the documentation is largely
rooted in examples it is, to an extent, left to the reader to abstract this into more general
concepts.

4.1.1 Recommendation
An improvement in this context would be to have clarification on end-to-end processes in
Flux, similar to how Envoy Proxy has an “life of an event” documentation:
https://www.envoyproxy.io/docs/envoy/v1.19.1/intro/life_of_a_request

From a security perspective such an overview would highly improve the understanding of
what trust boundaries Flux assumes and also describe the threat model of Flux. In such
end-to-end documentation, it would be of high value to make it clear how the individual
components relate to each other as well as describe where authentication and hardening
procedures are in place.

4.2 Blurry line between “GitOps toolkit” and “Flux”
We found the difference between GitOps toolkit blurry and at the beginning of the
engagement difficult to understand. For example, when going through the documentation
(https://fluxcd.io/docs) sequentially, then the first mention of “GitOps toolkit” is in the second
page within the “Guides” section, named “Helm Releases”:
https://fluxcd.io/docs/guides/helmreleases/
On this page it says a prerequisite to the guide is to have a Kubernetes cluster with the
GitOps controllers installed and then referencing the getting started and installation guides,
as shown by the following Figure.

© 2021 Ada Logics Ltd.
4

https://www.envoyproxy.io/docs/envoy/v1.19.1/intro/life_of_a_request
https://fluxcd.io/docs
https://fluxcd.io/docs/guides/helmreleases/

However, “GitOps toolkit” is not mentioned on these pages.

In addition to the above observations, the current destination of the link to the gitops toolkit
on the fluxcd.io page, namely https://fluxcd.io/#gitops-toolkit, does not lead anywhere. This is
the link on the rightmost box on the website as shown by the following Figure:

4.2.1 Recommendation
Flux uses names and concepts conservatively to easily convey the structure of the
infrastructure. However, the documentation must have an equal structure including proper
introduction of concepts. We recommend using clear naming of the components in the
system and ensuring proper introduction without broken links or links to pages that do not
clarify concepts that were promised. It would be a great assistance to have a page that
unifies the nomenclature of Flux and links to details about the definition or where the concept
is introduced.

4.3 Repositories and GitOps toolkit
We found that the documentation of each custom controller in Flux varies. This includes
particularly important information on concepts such as running and testing the controllers.
For example, an example where we found the repositories to have differences in their
documentation in an area where they should be much similar is the CONTRIBUTING.md
files. To show the difference in these files, we collected the titles in the Github pages and
these are as follows:

Source controllers:
● Contributing

○ Certificate of origin
○ Communications

■ Installing required dependencies
● macOS
● Arch Linux
● Building from source

© 2021 Ada Logics Ltd.
5

https://fluxcd.io/#gitops-toolkit

■ How to run the test suite
○ Acceptance policy

■ Format of the commit message
Kustomize controller:

● Contributing
○ Certificate of origin
○ Communications

■ How to run the test suite
■ How to run the controller locally

○ Acceptance policy
■ Format of the commit message

Image-automation-controller
● Contributing

○ Certificate of Origin
○ Communications

■ How to run the test suite
○ Acceptance policy

Image-reflector-controller
● Contributing

○ Certificate of origin
○ Communications

■ How to run the test suite
○ Acceptance policy

■ Format of the Commit message

Notification-controller
● Contributing

○ Certificate of Origin
○ Communications

■ How to run the test suite
○ Acceptance policy

■ Format of the commit message
Helm-controller

● Contributing
○ Certificate of Origin
○ Communications

■ How to run the test suite
■ How to run the controller locally

○ Acceptance policy
■ Format of the Commit Message

By looking at these titles, we can identify the following issues:
● All information related to “how to execute the controller” is in the “communications”

section.
● The files do not share the same guidelines, for example, the Kustomize and Helm

controllers have sections such as “How to run the controller locally” whereas none of
the others have.

● If we look deeper at the text in each of these files, we will also find differences
between similar sections. For example, the Helm and Kustomize controller asks
contributors to sign-off on commits whereas the others do not.

● If we look deeper at the text, Helm-controller and Kustomize-controller ask the user
to sign off commits whereas the other controllers do not.

© 2021 Ada Logics Ltd.
6

Furthermore, we want to emphasize that from a security perspective it is much more
straightforward to work with code that is well-documented in terms of how to build and run
the code under analysis. At present this type of documentation is only available in the
Kustomize and Helm controllers through the “how to run the controller locally” section.
Simply launching some of the controllers locally can be difficult for someone with limited
understanding of the Flux codebase.

4.3.1 Recommendation
Some observations that we made about these files which we think could improve the
documentation of Flux/GitOps Toolkit is:

1. Centralise the redundant sections. This includes:
○ Certificate of Origin.
○ Do not have developer guides under the “Communications” title. Currently, all

of the information related to “how to execute the controller” is under the
“communications” title. We believe this should not be the case

○ Acceptance policy should be centralised
○ Format of the commit message should be centralised

2. Each of the controllers should have clear guidelines on how to build and run the
projects. This includes the sections:

○ How to install dependencies
○ How to install the controller
○ How to run the test suite locally
○ How to run the controller locally

4.4 Documenting the permission system of Flux
Flux and the GitOps toolkit leverages RBAC to control permissions. Flux creates a complex
RBAC set up (and the set up based on the new impersonation will be even more complex)
and this role/permission set up is not well-documented. In order to get an understanding of
the RBAC set up it is currently required to inspect the implementation of RBAC yaml files
themselves. We consider this to be a significant issue since the RBAC roles and Flux will be
deployed within a cluster running potentially sensitive operations.

4.4.1 Recommendation
Provide a conceptual description of the permission system of Flux, preferably with schematic
to make it easy for a reader to quickly understand what the roles, resources and permissions
are in the Flux system. Highlight in particular:

● What RBAC roles are used
● What resources are used by the roles and the permissions on these resources
● Whether Flux asks for more than necessary to ease implementation.
● If the RBAC system is modifiable to create a more secure model.
● The effect that the RBAC implementation of Flux has on the entire state of the

cluster.

© 2021 Ada Logics Ltd.
7

4.5 Documenting the use of sensitive data by Flux in the cluster
Currently Flux provides no central documentation on the security of Flux. This is an issue as
a user might expose more data than anticipated and currently has to read the
implementation to identify these concepts.

4.5.1 Recommendation
Document the security context of Flux in a central location. Topics that are useful to
document on such a page include:

1. The sensitive data that Flux uses.
2. The attack surface of Flux.
3. What are the consequences of a compromise of Flux/component of Flux
4. Who should be allowed to administer Flux within an Organisation
5. Security hardening of Flux, i.e. Flux can be used in many ways and what are the best

practices from a security perspective and what are some of the pitfalls that can
happen

Open source projects that have examples of this:
● Docker: https://docs.docker.com/engine/security/
● Envoy:

https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/security/security
○ In particular the threat model

4.6 Missing release cycle documentation
The Flux controllers provide tagged releases on Github and the Flux release procedure is
documented here. However, the release procedure is missing security-relevant information
such as how long versions are supported and how often to expect releases.

Examples of open source projects that describe their release cycle:
● Kubernetes: https://kubernetes.io/releases/version-skew-policy/
● Redis: https://redis.io/topics/releases
● Linux kernel: https://www.kernel.org/category/releases.html

4.6.1 Recommendation
In the release procedure documentation specify the release cycle and for how long releases
are supported.

Following discussions with the Flux maintainers it was clarified that this will happen once
Flux reaches general availability status. We consider this reasonable and would recommend
explicitly stating this on the release procedure page.

© 2021 Ada Logics Ltd.
8

https://docs.docker.com/engine/security/
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/security/security
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/security/threat_model
https://github.com/fluxcd/flux2/blob/main/docs/internal/release.md
https://kubernetes.io/releases/version-skew-policy/
https://redis.io/topics/releases
https://www.kernel.org/category/releases.html

5 Fuzzing integration
We integrated fuzzers into all of the Flux repositories except the command line utility as the
command line utility is not interesting from a fuzzing perspective. The focus was primarily to
target the reconcilers of the various controllers. The reconcilers triggers when Kubernetes
events happen, such as a Kubernetes object being created or modified, and will act based
on:

1. The values in the reconciled object
2. The state of the Kubernetes cluster
3. The value of various other inputs, e.g. the downloading artifacts from external URLs.
4. The state of the controller itself

The goal of our fuzzers have been to focus primarily on mutating (1) but we also created
some fuzzers that are based on randomising the state of (3) and (4) listed above.

The fuzzers are developed such that they can integrate with OSS-Fuzz
(https://github.com/google/oss-fuzz) and this requires that the fuzzers can run in a specific
runtime environment (https://google.github.io/oss-fuzz/further-reading/fuzzer-environment/).
The runtime environment is different from the build environment and the fuzzers should be
able to run as standalone binaries. This means we have had to implement some hacky parts
in the fuzzers, namely, download various Flux artifacts within the fuzzer initialisation itself
and this is all documented in the fuzzer source code. The current state of the fuzzers are:

● They are waiting to be reviewed and merged by the Flux maintainers (see PRs
below).

● OSS-Fuzz integration is ready but requires merge from the Flux maintainers.
● CIFuzz integration is prepared, but the above steps must be completed first.

5.1 Findings
During local runs of the fuzzers we found 3 issues:

● 1 slice out-of-bounds panic (Issue 13)
● 2 nil-dereference panics (Issue 15)

We predict the fuzzers will uncover more issues once the fuzzers are merged and integrated
with OSS-Fuzz. Please see the following blog post on the importance of continuity in fuzzing
(https://adalogics.com/blog/the-importance-of-continuity-in-fuzzing-cve-2020-28362).

5.2 Fuzzers developed
The following pull requests have been made and are all awaiting review. In total, this
includes around 3500 lines of code added to the Flux repositories. The changes are all
additive and thus there are no modifications to any of the Flux logic.

● https://github.com/fluxcd/image-automation-controller/pull/229
● https://github.com/fluxcd/source-controller/pull/443
● https://github.com/fluxcd/pkg/pull/150
● https://github.com/fluxcd/image-reflector-controller/pull/175
● https://github.com/fluxcd/helm-controller/pull/326
● https://github.com/fluxcd/notification-controller/pull/250
● https://github.com/fluxcd/kustomize-controller/pull/434

© 2021 Ada Logics Ltd.
9

https://github.com/google/oss-fuzz
https://google.github.io/oss-fuzz/further-reading/fuzzer-environment/
https://adalogics.com/blog/the-importance-of-continuity-in-fuzzing-cve-2020-28362
https://github.com/fluxcd/image-automation-controller/pull/229
https://github.com/fluxcd/source-controller/pull/443
https://github.com/fluxcd/pkg/pull/150
https://github.com/fluxcd/image-reflector-controller/pull/175
https://github.com/fluxcd/helm-controller/pull/326
https://github.com/fluxcd/notification-controller/pull/250
https://github.com/fluxcd/kustomize-controller/pull/434

● OSS-fuzz initial integration PR: https://github.com/google/oss-fuzz/pull/6539

The following table shows the name of the fuzzers as well as which controller and reconciler
they target, and also contains a URL with the PR for each fuzzer.

Fuzzer name Controller Reconciler Pull
request

1 FuzzReconciler Image Automation
Controller

ImageUpdateAutomationR
econciler

pull/229

2 FuzzUpdateWithSetters Image Automation
Controller

N/a* pull/229

3 FuzzRandomGitFiles Source Controller GitRepositoryReconciler pull/443

4 FuzzGitResourceObject Source Controller GitRepositoryReconciler pull/443

5 FuzzHelmchartController Source Controller HelmRepositoryReconciler pull/443

6 FuzzStorageArchive Source Controller N/a* pull/443

7 FuzzStorageCopy Source Controller N/a* pull/443

8 FuzzGetterConditions Shared Library: Pkg N/a* pull/150

9 FuzzConditionsMatch Shared Library: Pkg N/a* pull/150

10 FuzzPatchApply Shared Library: Pkg N/a* pull/150

11 FuzzConditionsUnstructured Shared Library: Pkg N/a* pull/150

12 FuzzUntar Shared Library: Pkg N/a* pull/150

13 FuzzLibGit2Error Shared Library: Pkg N/a* pull/150

14 FuzzEventInfof Shared Library: Pkg N/a* pull/150

15 FuzzTlsConfig Shared Library: Pkg N/a* pull/150

16 Fuzz Image Reflector
Controller

ImagePolicyReconciler pull/175

17 FuzzHelmreleaseComposeValu
es

Helm Controller HelmReleaseReconciler pull/326

18 FuzzHelmreleasereconcile Helm Controller HelmReleaseReconciler pull/326

19 Fuzz Notification
Controller

AlertReconciler,
ReceiverReconciler

pull/250

20 Fuzz Kustomize Controller KustomizationReconciler pull/434

*Does not target a reconciler

5.3 Next steps for fuzzer integration
The Flux team needs to perform several steps in order to integrate continuous fuzzing with
OSS-Fuzz. All of the steps have been prepared by Ada Logics but will need to be merged
etc. by the Flux team. The next steps are:

© 2021 Ada Logics Ltd.
10

https://github.com/google/oss-fuzz/pull/6539
https://github.com/fluxcd/image-automation-controller/pull/229
https://github.com/fluxcd/image-automation-controller/pull/229
https://github.com/fluxcd/source-controller/pull/443
https://github.com/fluxcd/source-controller/pull/443
https://github.com/fluxcd/source-controller/pull/443
https://github.com/fluxcd/source-controller/pull/443
https://github.com/fluxcd/source-controller/pull/443
https://github.com/fluxcd/pkg/pull/150
https://github.com/fluxcd/pkg/pull/150
https://github.com/fluxcd/pkg/pull/150
https://github.com/fluxcd/pkg/pull/150
https://github.com/fluxcd/pkg/pull/150
https://github.com/fluxcd/pkg/pull/150
https://github.com/fluxcd/pkg/pull/150
https://github.com/fluxcd/pkg/pull/150
https://github.com/fluxcd/image-reflector-controller/pull/175
https://github.com/fluxcd/helm-controller/pull/326
https://github.com/fluxcd/helm-controller/pull/326
https://github.com/fluxcd/notification-controller/pull/250
https://github.com/fluxcd/kustomize-controller/pull/434

1. Review and merge fuzzers. Once the fuzzers are merged, Ada Logics will switch
the git source in Flux’s OSS-fuzz integration from our forks to Flux’s own git
repositories (here). We will furthermore complete the CIFuzz set up which is
supported by OSS-fuzz.

2. Enable static linking of C dependencies. All fuzzers must be built with static linking
to be run by OSS-fuzz. This issue is already in progress by the Flux maintainers, and
once it is done it should enable fuzzers that depend on libgit2 to run on OSS-fuzz.

3. CI integration: Once Flux is merged into OSS-fuzz, upload main.yml to
.github/workflows/ of each repository that contains fuzzers running on OSS-fuzz:

main.yml

name: CIFuzz

on: [pull_request]

jobs:

Fuzzing:

runs-on: ubuntu-latest

steps:

- name: Build Fuzzers

id: build

uses:

google/oss-fuzz/infra/cifuzz/actions/build_fuzzers@master

with:

oss-fuzz-project-name: 'fluxcd'

language: go

- name: Run Fuzzers

uses: google/oss-fuzz/infra/cifuzz/actions/run_fuzzers@master

with:

oss-fuzz-project-name: 'fluxcd'

language: go

fuzz-seconds: 60

- name: Upload Crash

uses: actions/upload-artifact@v1

if: failure() && steps.build.outcome == 'success'

with:

name: artifacts

path: ./out/artifacts

© 2021 Ada Logics Ltd.
11

https://github.com/google/oss-fuzz/pull/6539/files
https://google.github.io/oss-fuzz/getting-started/continuous-integration/

6 Review of multi-tenancy access control model
The Flux team requested that we review a set of early thoughts on a new security model of
Flux, proposed in https://github.com/fluxcd/flux2/pull/582. The focus of the review was on
general advice on the next steps required for turning it into a proper security model. The
document we specifically review in this section is the file accessible here: Secure
Impersonation

The document describes a set of ideas on a new implementation of multi-tenancy in Flux by
way of secure impersonation. Overall, we welcome many of the ideas in the document. We
find the goals of the document to be reasonable and we find strictly enforcing the role with
which the kustomize and helm controllers operate on GitOps-managed objects to be based
on the user of the object to be a security improvement. However, the document is written in a
manner where concepts involve the current state significantly, but the current state is not
referenced or documented in another place and instead hidden in the implementation of Flux
and within the guide for managing multi-tenancy in Flux here. Furthermore, the
documentation discusses both the model and implementation in an ad hoc manner, which
makes it difficult to separate the two without detailed knowledge of the implementation at the
time the document was written. As such, the text is written by Flux maintainers for Flux
maintainers.

We consider the most important step to turning the ideas of the text into a proper security
model is to define the ideas in a manner that does not require detailed knowledge of Flux
that is only accessible from studying the source code. The high-level next steps to
converting this into a security model overall is to properly separate documentation for:

1. The current (pre-proposal) security model of Flux
2. The problems of the existing model and what is to be tackled
3. The design of the new model
4. Argumentation as to why the new model solves the problems that were to be tackled
5. Implementation documentation for the new model

The security model should be a self-contained document that provides definitions and
outlines concepts, references relevant texts and also describes the model “as-is”. The model
should outline all core Flux components: the reviewed text does not mention all controllers
relevant in the Flux ecosystem, e.g. it predates image-reflector-controller and
image-automation-controller, so it is unclear where these fit into the overall scheme. The
security model that comes out of the reviewed text should clearly outline where each of the
components of Flux fit into the security model.

The focus on the security model should be to outline the conceptual artifacts relevant in the
Flux infrastructure. This includes the users of the system, the roles of the users, the data
handled and the permissions of the roles on the data. The Flux maintainers should
emphasize on outlining where permissions change due to the impersonation and also what
procedures are in place to enforce the permissions. Once this is in place, an added benefit is
that it will become more clear for the Flux maintainers to document their security posture as
discussed in “comments on Flux documentation” of this report.

© 2021 Ada Logics Ltd.
12

https://github.com/fluxcd/flux2/pull/582
https://github.com/fluxcd/flux2/blob/1c5a25313561771d585c4192d7f330b45753cd99/docs/proposals/secure-impersonation.md
https://github.com/fluxcd/flux2/blob/1c5a25313561771d585c4192d7f330b45753cd99/docs/proposals/secure-impersonation.md
https://github.com/fluxcd/flux2-multi-tenancy

Following discussions with the Flux maintainers it became clear that some parts of the
documentation may be inaccurate. For example, the document states “The controller
ServiceAccounts are far overprivileged for Flux API operations” and this was contested by
some Flux maintainers. We are positive about the approach to designing the model based
on a problem-oriented strategy, however, there should be consensus amongst the Flux
maintainers on the problems.

6.0.1 Recommendations
Our recommendation is for the Flux maintainers to compartmentalise these ideas into the
separate documents described above. This will make it possible to define a model and also
evaluate the soundness of it. We would also recommend clearly stating the status of the
reviewed text in the document, as it is easy to interpret the text being a description of a
model whereas this is indeed not the case.

We recommend the Flux maintainers to engage security professionals for help exclusively
focused on designing and implementing the security model of Flux. The Flux maintainers
must outline the state of the current model, the problems of the current model and their
priorities in a new model, and then consult a security team that is specialised in designing
security models and access control systems. We recommend engaging with experts, such
as the CNCF Security Technical Advisory Group, on both the design of the underlying user
system and also on the implementation of the security model.

© 2021 Ada Logics Ltd.
13

https://github.com/cncf/tag-security

7 Issues found
In this section we list the issues found through the engagement, in particular the manual
auditing of the code and results from the fuzzers.

In total, our review found 22 issues divided into:
● 1 high severity issue
● 3 medium severity issues
● 13 low severity issues
● 5 informational issues

Issue Severity ID

Issue 1: Arbitrary command execution via
command injection in the kustomize controller
by way of secrets

High ADA-FLUX-21-01

Issue 2: Nil-dereference in image-automation
controller

Low ADA-FLUX-21-02

Issue 3: Credentials exposed in environment
variables and command line arguments

Medium ADA-FLUX-21-03

Issue 4: Use of deprecated library Low ADA-FLUX-21-04

Issue 5: Invalid and missing testing
documentation

Informational ADA-FLUX-21-05

Issue 6: Bug fixes do not always include
regression tests

Informational ADA-FLUX-21-06

Issue 7: Deprecated SHA-1 is used for
checksums

Low ADA-FLUX-21-07

Issue 8: Missing checksum verification Medium ADA-FLUX-21-08

Issue 9 Inconsistent and missing logging Low ADA-FLUX-21-09

Issue 10: Reading large files can crash flux with
an out-of-memory bug

Low ADA-FLUX-21-10

Issue 11: Files are opened but never closed Low ADA-FLUX-21-11

Issue 12: Unhandled error Low ADA-FLUX-21-12

Issue 13: Slice bounds out of range Low ADA-FLUX-21-13

Issue 14: Possible nil-deref in
image-automation controller

Low ADA-FLUX-21-14

Issue 15: Inconsistent code-styles and potential
nil-dereferences

Informational ADA-FLUX-21-15

© 2021 Ada Logics Ltd.
14

Issue 16: Missing return statement after error Low ADA-FLUX-21-16

Issue 17: File extension comparisons are case
sensitive

Low ADA-FLUX-21-17

Issue 18: Some dependencies are outdated Informational ADA-FLUX-21-18

Issue 19: Lack of container security options in
deployed pods

Low ADA-FLUX-21-19

Issue 20: Unhandled errors from deferred file
close operations

Low ADA-FLUX-21-20

Issue 21: x509 certificates are not used for
Webex

Medium ADA-FLUX-21-21

Issue 22: Unnecessary conditions in the code Informational ADA-FLUX-21-22

© 2021 Ada Logics Ltd.
15

7.1 Issue 1: Arbitrary command execution via command
injection in the Kustomize controller by way of secrets

Severity High

Difficulty Medium

Target kustomize-controller/controllers/kustomization_controller.go

Finding ID ADA-FLUX-21-01

Description:
There are two command injections in the kustomize controller and they exist within the
apply and validate functions. Consider the following code from the validate function:

cmd := fmt.Sprintf("cd %s && kubectl apply -f %s.yaml --timeout=%s --dry-run=%s

--cache-dir=/tmp --force=%t",

dirPath, kustomization.GetUID(), kustomization.GetTimeout().String(),

validation, kustomization.Spec.Force)

if kustomization.Spec.KubeConfig != nil {

kubeConfig, err := imp.WriteKubeConfig(ctx)

if err != nil {

return err

}

cmd = fmt.Sprintf("%s --kubeconfig=%s", cmd, kubeConfig)

} else {

// impersonate SA

if kustomization.Spec.ServiceAccountName != "" {

saToken, err := imp.GetServiceAccountToken(ctx)

if err != nil {

return fmt.Errorf("service account impersonation failed:

%w", err)

}

cmd = fmt.Sprintf("%s --token %s", cmd, saToken)

}

}

command := exec.CommandContext(applyCtx, "/bin/sh", "-c", cmd)

Command, err := command.CombinedOutput

The code executes a command on the system based on the content of the cmd string, and
the cmd string is assembled based on the values in the kustomization object being
reconciled. Some of the values that are used to assemble the cmd string comes from objects
referenced by the kustomization object, including a token extracted from a secret by way

© 2021 Ada Logics Ltd.
16

of a service account, which in the above code is the value returned by
imp.GetServiceAccountToken

The value returned by imp.GetServiceAccountToken is a string and no sanitization is done
on it, so from the perspective of the above code it can in essence be an arbitrary string. As
an example, consider the value “ || mkdir /tmp/fromsecret2” being returned, then this string
will be interpreted as a command and be executed as part of the CombinedOutput call.

A similar code pattern is present in the validate function.

7.1.0.1 Steps to reproduce:

To make the proof-of-concept easier to construct we comment out the following lines in
GetClient (in kustomization_impersonation.go). To the best of our knowledge this does
not have implications on the exploitability of the command injections.

func (ki *KustomizeImpersonation) GetClient(ctx context.Context) (client.Client,

*polling.StatusPoller, error) {

if ki.kustomization.Spec.KubeConfig == nil {

//if ki.kustomization.Spec.ServiceAccountName != "" {

// return ki.clientForServiceAccount(ctx)

//}

return ki.Client, ki.statusPoller, nil

}

return ki.clientForKubeConfig(ctx)

}

Then, follow the documented steps on how to run the controller locally:
https://github.com/fluxcd/kustomize-controller/blob/74f08c3f1b3ec8ab8725c7775da8d32903
996835/CONTRIBUTING.md#how-to-run-the-controller-locally

Create the following secret and notice the value of the secret being similar to the example
above:

kubectl create secret generic build-robot43-token --from-literal=token=" || mkdir

/tmp/fromsecret2"

Then apply the following .yaml file. The file simply sets up a service account that refers to
the secret as well as a customization object that refers to the service account.

apiVersion: v1

kind: ServiceAccount

metadata:

creationTimestamp: 2015-06-16T00:12:59Z

name: build-robot43

namespace: default

resourceVersion: "272500"

© 2021 Ada Logics Ltd.
17

https://github.com/fluxcd/kustomize-controller/blob/74f08c3f1b3ec8ab8725c7775da8d32903996835/CONTRIBUTING.md#how-to-run-the-controller-locally
https://github.com/fluxcd/kustomize-controller/blob/74f08c3f1b3ec8ab8725c7775da8d32903996835/CONTRIBUTING.md#how-to-run-the-controller-locally

automountServiceAccountToken: false

secrets:

- name: build-robot43-token

apiVersion: kustomize.toolkit.fluxcd.io/v1beta1

kind: Kustomization

metadata:

name: webapp-dev43

spec:

interval: 5m

path: "./deploy/webapp/"

prune: false

sourceRef:

kind: GitRepository

name: webapp-latest

serviceAccountName: build-robot43

validation: client

healthChecks:

- kind: Deployment

name: backend

namespace: webapp

- kind: Deployment

name: frontend

namespace: webapp

timeout: 2m

Following this, you should see a directory /tmp/fromsecret2 where your customization
controller runs. To execute other commands you simply set the value in the secret to be
something different.

We consider this to be high severity since it leads to executing an arbitrary command
through a controller that runs with cluster-admin privileges. As such, this is an avenue for
potential privilege escalation in that controlling the value of the custom resources leads to
arbitrary execution by way of the kustomize controller.

We consider the difficulty to be medium since the set up is fairly simple, but an attacker
needs to be able to create an arbitrary secret as well as being able to create the correct
kustomization objects. Thus, an attacker should already have transcended various trust
boundaries. In the event that a non-admin user creates a service account with a
corresponding secret to be consumed by the kustomize controller, then they can effectively
execute commands with the privileges of the controller.

7.1.1 Recommendation
1. Do not use exec.CommandContext unless strictly needed, which it does not seem to be

in this case. Preferably use API calls instead.
2. Sanitize input that is used in sensitive operations.

© 2021 Ada Logics Ltd.
18

7.1.2 Status
A fix proposed and merged in kustomize-controller v0.15.0 and specifically this PR
https://github.com/fluxcd/kustomize-controller/pull/426

A security advisory is published here.

© 2021 Ada Logics Ltd.
19

https://github.com/fluxcd/kustomize-controller/pull/426
https://github.com/fluxcd/kustomize-controller/security/advisories/GHSA-35rf-v2jv-gfg7

7.2 Issue 2: Nil-dereference in image-automation controller

Severity Low

Difficulty Medium

Target image-automation-controller/controllers/imageupdateautomation_controller.go

Finding ID ADA-FLUX-21-02

7.2.1 Description
Consider the code in the Reconciler function of image-automation controller:

// validate the git spec and default any values needed later, before proceeding

var ref *sourcev1.GitRepositoryRef

if gitSpec.Checkout != nil {

ref = &gitSpec.Checkout.Reference

tracelog.Info("using git repository ref from .spec.git.checkout", "ref",

ref)

} else if r := origin.Spec.Reference; r != nil {

ref = r

tracelog.Info("using git repository ref from GitRepository spec", "ref",

ref)

} // else remain as `nil`, which is an acceptable value for cloneInto, later.

var pushBranch string

if gitSpec.Push != nil {

pushBranch = gitSpec.Push.Branch

tracelog.Info("using push branch from .spec.push.branch", "branch",

pushBranch)

} else {

// Here's where it gets constrained. If there's no push branch

// given, then the checkout ref must include a branch, and

// that can be used.

if ref.Branch == "" {

failWithError(fmt.Errorf("Push branch not given explicitly, and

cannot be inferred from .spec.git.checkout.ref or GitRepository .spec.ref"))

}

pushBranch = ref.Branch

tracelog.Info("using push branch from $ref.branch", "branch", pushBranch)

}

In the above code that ref can be nil when the code if ref.Branch == "" executes, if the
following conditions are true:

● gitSpec.Checkout is nil

© 2021 Ada Logics Ltd.
20

● origin.Spec.Reference is nil
● gitSpec.push is nil

7.2.1.1 Steps to reproduce:
Launch the image-automation-controller locally with make run

Run kubectl apply -f ./nilderef.yaml with the following nilderef.yaml file:

apiVersion: source.toolkit.fluxcd.io/v1beta1

kind: GitRepository

metadata:

name: sample-repo

spec:

interval: 1m

url: https://github.com/stefanprodan/podinfo

apiVersion: image.toolkit.fluxcd.io/v1beta1

kind: ImageUpdateAutomation

metadata:

name: imageupdateautomation-sample

spec:

interval: 5m

sourceRef:

kind: GitRepository # the only valid value, but good practice to be explicit

here

name: sample-repo

git:

commit:

author:

name: fluxbot

email: fluxbot@example.com

messageTemplate: |

An automated update from FluxBot

[ci skip]

signingKey:

secretRef:

name: git-pgp

update:

strategy: Setters

path: ./cluster/sample

The image-automation controller will panic and crash:

panic: runtime error: invalid memory address or nil pointer dereference

[signal SIGSEGV: segmentation violation code=0x1 addr=0x8 pc=0x156a969]

goroutine 372 [running]:

© 2021 Ada Logics Ltd.
21

github.com/fluxcd/image-automation-controller/controllers.(*ImageUpdateAutomatio

nReconciler).Reconcile(0xc00090b4c0, {0x1b31258, 0xc000548660}, {{{0xc000b9ec39,

0x17d2560}, {0xc00004c960, 0xc000754780}}})

image-automation-controller/controllers/imageupdateautomation_controller.go:214

+0xc09

sigs.k8s.io/controller-runtime/pkg/internal/controller.(*Controller).reconcileHa

ndler(0xc00063ae60, {0x1b311b0, 0xc000a040c0}, {0x174dfa0, 0xc00071a2e0})

....

A malformed kubernetes object can crash a loop of the image-automation controller which
could impact the delivery pipeline. The execution of creating objects that trigger the
nil-dereference is fairly simple and given that the nilderef.yaml closely resembles a valid
configuration a misconfiguration may happen.

7.2.2 Recommendation
Change the code of the if-statement where the nil-dereference happen to fail if ref is nil:

if (ref == nil || ref.Branch == "") {

return failWithError(fmt.Errorf("Push branch not given explicitly, and

cannot be inferred from .spec.git.checkout.ref or GitRepository .spec.ref"))

}

pushBranch = ref.Branch

tracelog.Info("using push branch from $ref.branch", "branch", pushBranch)

© 2021 Ada Logics Ltd.
22

7.3 Issue 3: Credentials exposed in environment variables and
command line arguments

Severity Medium

Difficulty High

Target https://github.com/fluxcd/flux2

Finding ID ADA-FLUX-21-03

7.3.1 Description
Flux-CLI uses credentials to bootstrap many commands. These are often placed in the
command line or environment variables. This means the credentials are exposed to a wider
audience than intended, e.g. an internal attacker with a host position will be able to watch
credentials through various utilities such as via ps. This could lead to credentials being
stolen if someone has access to the host at which the command line was entered but not the
access to the token of a given Github, as then the details can be leaked.

In the Kubernetes Security audit 2019 this type of attack was classified Medium in severity
(https://github.com/kubernetes/community/blob/master/sig-security/security-audit-2019/findin
gs/Kubernetes%20Final%20Report.pdf finding ID: TOB-K8S-005) and to keep consistency
we follow this severity.

7.3.2 Recommendation
Make it possible to write sensitive data in way that it won't be exposed, such as: ***** or not
showing any characters when being typed.

© 2021 Ada Logics Ltd.
23

https://github.com/kubernetes/community/blob/master/sig-security/security-audit-2019/findings/Kubernetes%20Final%20Report.pdf
https://github.com/kubernetes/community/blob/master/sig-security/security-audit-2019/findings/Kubernetes%20Final%20Report.pdf

7.4 Issue 4: Use of deprecated library

Severity Low

Difficulty High

Target notification-controller/internal/server/event_server.go

Finding ID ADA-FLUX-21-04

7.4.1 Description
Flux uses the internal io/ioutil package which was deprecated in Go 1.16 (released in
february 2021) such as here:
https://github.com/fluxcd/notification-controller/blob/main/internal/server/event_server.go#L2
5

The io/ioutil packages was deprecated in Go 1.16 as seen in the announcement:
https://golang.org/doc/go1.16#ioutil

The deprecation was not due to security issues and as such it does not pose any immediate
risk. However, the use of deprecated libraries is discouraged and can lead to situations
where security issues in a library are found but never patched.

7.4.2 Recommendation
Switch from a deprecated library to a maintained library. In this case the deprecated library
was replaced by other GO standards and we recommend using these.

© 2021 Ada Logics Ltd.
24

https://github.com/fluxcd/notification-controller/blob/main/internal/server/event_server.go#L25
https://github.com/fluxcd/notification-controller/blob/main/internal/server/event_server.go#L25
https://golang.org/doc/go1.16#ioutil

7.5 Issue 5: Invalid and missing testing documentation

Severity Informational

Difficulty N/A

Target

Finding ID ADA-FLUX-21-05

7.5.1 Description
The documentation for running the tests for the controllers is missing information and we had
to take several more steps in order for them to work, for example on the need for creating
custom resources beforehand and more.

This item is informational and does not represent a vulnerability in and of itself, however, it is
imperative to ensure tests are properly run. An example of where there is no documentation
on how to run the image-automation controller locally
https://github.com/fluxcd/image-automation-controller/blob/main/CONTRIBUTING.md

7.5.2 Recommendation
Provide proper documentation on how to build, test and run the Flux code.

© 2021 Ada Logics Ltd.
25

https://github.com/fluxcd/image-automation-controller/blob/main/CONTRIBUTING.md

7.6 Issue 6: Bug fixes do not always include regression tests

Severity Informational

Difficulty N/A

Target

Finding ID ADA-FLUX-21-06

7.6.1 Description
Examples of bug fixes that do not include regression tests:

● https://github.com/fluxcd/source-controller/pull/49
● https://github.com/fluxcd/source-controller/pull/417

Issues that come up can often be introduced in different settings later on and regression
testing is an important tool to prevent re-introducing known bugs and crashes.

7.6.2 Recommendation
Create regression tests for reported issues.

© 2021 Ada Logics Ltd.
26

https://github.com/fluxcd/source-controller/pull/49
https://github.com/fluxcd/source-controller/pull/417

7.7 Issue 7: Deprecated SHA-1 is used for checksums

Severity Low

Difficulty High

Target https://github.com/fluxcd/source-controller/blob/main/controllers/storage.go

Finding ID ADA-FLUX-21-07

7.7.1 Description
In the storage utility of the source controller checksums on the collected artifacts are
calculated using SHA-1. SHA-1 is considered deprecated as collision attacks against SHA-1
are feasible.

7.7.2 Recommendation
Switch from SHA-1 to SHA-2 in checksum calculations.

7.7.3 Additional note
We want to emphasize here that it is only in the checksum calculation SHA-1 is
recommended not to be used. In the HMAC implementation of Flux SHA-1 is still safe to use.

© 2021 Ada Logics Ltd.
27

7.8 Issue 8: Missing checksum verification

Severity Medium

Difficulty High

Target https://github.com/fluxcd/source-controller/blob/main/controllers/storage.go
https://github.com/fluxcd/source-controller/blob/main/controllers/gitrepository_c
ontroller.go

Finding ID ADA-FLUX-21-08

7.8.1 Description
In the source-controller checksums are calculated when fetching artifacts from S3 stores
(bucket_reconciler.go) and git repositories (gitrepository_controller.go). Specifically, the
checksum is calculated here:
https://github.com/fluxcd/source-controller/blob/d7afc3596bdfc3818ed8987db029bea8a461c
62c/controllers/storage.go#L272

This function is called by both the git repository reconciler and the bucket reconciler, but it is
never checked in the reconcilers despite comments indicating “check integrity”.

- https://github.com/fluxcd/source-controller/blob/d7afc3596bdfc3818ed8987db029bea
8a461c62c/controllers/gitrepository_controller.go#L350

We assume this integrity check should be matched with data from the source where you
download and that is a good idea. However, there is never any check on the checksums
calculated.

7.8.2 Recommendation
Ensure proper verification of checksums.

© 2021 Ada Logics Ltd.
28

https://github.com/fluxcd/source-controller/blob/main/controllers/storage.go
https://github.com/fluxcd/source-controller/blob/main/controllers/gitrepository_controller.go
https://github.com/fluxcd/source-controller/blob/main/controllers/gitrepository_controller.go
https://github.com/fluxcd/source-controller/blob/d7afc3596bdfc3818ed8987db029bea8a461c62c/controllers/storage.go#L272
https://github.com/fluxcd/source-controller/blob/d7afc3596bdfc3818ed8987db029bea8a461c62c/controllers/storage.go#L272
https://github.com/fluxcd/source-controller/blob/d7afc3596bdfc3818ed8987db029bea8a461c62c/controllers/gitrepository_controller.go#L350
https://github.com/fluxcd/source-controller/blob/d7afc3596bdfc3818ed8987db029bea8a461c62c/controllers/gitrepository_controller.go#L350

7.9 Issue 9 Inconsistent and missing logging

Severity Low

Difficulty High

Target Flux controllers

Finding ID ADA-FLUX-21-09

7.9.1 Description
Proper logging is important to ensure audit trails in case of breaches and, in general, ensure
non-repudiation of the system in case an attack happens. However, throughout the code we
found inconsistency in the way logging is handled, and often when errors occur there would
be no error logging.

The ImageAutomationReconciler declares the following failWithError function:

// failWithError is a helper for bailing on the reconciliation.

failWithError := func(err error) (ctrl.Result, error) {

r.event(ctx, auto, events.EventSeverityError, err.Error())

imagev1.SetImageUpdateAutomationReadiness(&auto,

metav1.ConditionFalse, meta.ReconciliationFailedReason, err.Error())

if err := r.patchStatus(ctx, req, auto.Status); err != nil {

log.Error(err, "failed to reconcile")

}

return ctrl.Result{Requeue: true}, err

}

This function is consistently used to return from the Reconcile function in an appropriate
manner with proper logging, e.g:

access, err := r.getRepoAccess(ctx, &origin)

if err != nil {

return failWithError(err)

}

This is a good way of abstracting common logic and ensuring proper logging. However, this
approach is never used in any of the other controllers and these controllers implement the
logic quite differently, e.g.

Source controller:

© 2021 Ada Logics Ltd.
29

https://github.com/fluxcd/source-controller/blob/d7afc3596bdfc3818ed8987db029bea8a461c62c/controllers/gitrepository_controller.go#L175

// update status with the reconciliation result

if err := r.updateStatus(ctx, req, reconciledRepository.Status); err !=

nil {

log.Error(err, "unable to update status")

return ctrl.Result{Requeue: true}, err

}

// if reconciliation failed, record the failure and requeue immediately

if reconcileErr != nil {

r.event(ctx, reconciledRepository, events.EventSeverityError,

reconcileErr.Error())

r.recordReadiness(ctx, reconciledRepository)

return ctrl.Result{Requeue: true}, reconcileErr

}

ImageReflector controller:

// check if we are allowed to use the referenced ImageRepository

if _, err := r.hasAccessToRepository(ctx, req,

pol.Spec.ImageRepositoryRef, repo.Spec.AccessFrom); err != nil {

imagev1.SetImagePolicyReadiness(

&pol,

metav1.ConditionFalse,

"AccessDenied",

err.Error(),

)

if err := r.patchStatus(ctx, req, pol.Status); err != nil {

return ctrl.Result{Requeue: true}, err

}

log.Error(err, "access denied")

return ctrl.Result{}, nil

}

Alert controller:

// validate alert spec and provider

if err := r.validate(ctx, alert); err != nil {

meta.SetResourceCondition(&alert, meta.ReadyCondition,

metav1.ConditionFalse, meta.ReconciliationFailedReason, err.Error())

if err := r.patchStatus(ctx, req, alert.Status); err != nil {

return ctrl.Result{Requeue: true}, err

}

return ctrl.Result{Requeue: true}, err

}

© 2021 Ada Logics Ltd.
30

https://github.com/fluxcd/image-reflector-controller/blob/327a6ea9fd78783e4daaa2da3cc1f40dbcca0cab/controllers/imagepolicy_controller.go#L118
https://github.com/fluxcd/notification-controller/blob/8ff5f75a255d7dd0677590510ab1abf1d33b4f85/controllers/alert_controller.go#L76

7.9.2 Recommendation
1. Standardise how logging should occur.
2. Use helper methods for common error handling.
3. Log whenever errors occur.
4. Log differently depending on how each controller exits the Reconcile functions.

© 2021 Ada Logics Ltd.
31

7.10 Issue 10: Reading large files can crash flux with an
out-of-memory bug

Severity Low

Difficulty High

Target Helmchart controller

Finding ID ADA-FLUX-21-10

7.10.1 Description
There are two locations in the Helmchart controller where the controller loads a Helm chart
into memory by reading all of the Helm chart using io.ReadAll without checking the size. As
such, if a large Helmchart is provided this can cause the controller to be killed with an
Out-Of-Memory (OOM) error. The io.ReadAll function needs to be used with care due to this
issue. As such, if an attacker can taint a Helmchar chart to be large in size, then a
denial-of-service attack can occur.

The code where io.ReadAll is used are here:
https://github.com/fluxcd/source-controller/blob/main/controllers/helmchart_controller.go#L32
9-L333

indexFile, err :=

os.Open(r.Storage.LocalPath(*repository.GetArtifact()))

if err != nil {

return sourcev1.HelmChartNotReady(chart,

sourcev1.StorageOperationFailedReason, err.Error()), err

}

b, err := io.ReadAll(indexFile)

And here:
https://github.com/fluxcd/source-controller/blob/d7afc3596bdfc3818ed8987db029bea8a461c
62c/internal/helm/repository.go#L208-L212

func (r *ChartRepository) DownloadIndex() error {

u, err := url.Parse(r.URL)

if err != nil {

return err

}

u.RawPath = path.Join(u.RawPath, "index.yaml")

u.Path = path.Join(u.Path, "index.yaml")

res, err := r.Client.Get(u.String(), r.Options...)

© 2021 Ada Logics Ltd.
32

https://github.com/fluxcd/source-controller/blob/main/controllers/helmchart_controller.go#L329-L333
https://github.com/fluxcd/source-controller/blob/main/controllers/helmchart_controller.go#L329-L333
https://github.com/fluxcd/source-controller/blob/d7afc3596bdfc3818ed8987db029bea8a461c62c/internal/helm/repository.go#L208-L212
https://github.com/fluxcd/source-controller/blob/d7afc3596bdfc3818ed8987db029bea8a461c62c/internal/helm/repository.go#L208-L212

if err != nil {

return err

}

b, err := io.ReadAll(res)

7.10.2 Recommendation
Validate size of input before reading data with io.ReadAll and in general avoid loading
large arbitrary data into memory regardless of size. Set a strict upper limit, and perhaps a
user-configurable limit. In addition to this, provide logging around the file loading, in
particular when a large file is loaded, as this will be important in auditing logs.

© 2021 Ada Logics Ltd.
33

7.11 Issue 11: Files are opened but never closed

Severity Low

Difficulty High

Target https://github.com/fluxcd/source-controller/blob/main/controllers/helmch
art_controller.go

Finding ID ADA-FLUX-21-11

7.11.1 Description
There are two occurrences in Helmchart controller where a file is opened but never closed
here and here. This can lead to resource leaks and exhaustion of available file descriptors in
the process. An example of the code pattern is shown here:

indexFile, err :=

os.Open(r.Storage.LocalPath(*repository.GetArtifact()))

if err != nil {

return sourcev1.HelmChartNotReady(chart,

sourcev1.StorageOperationFailedReason, err.Error()), err

}

b, err := io.ReadAll(indexFile)

7.11.2 Recommendation
Fix the file descriptor leak by appropriately closing opened files. This can be performed with
a deferred indexFile.Close() operation, however, notice issue 20 in this document on
handling deferring file close operations.

© 2021 Ada Logics Ltd.
34

https://github.com/fluxcd/source-controller/blob/main/controllers/helmchart_controller.go#L329
https://github.com/fluxcd/source-controller/blob/main/controllers/helmchart_controller.go#L329
https://github.com/fluxcd/source-controller/blob/main/controllers/helmchart_controller.go#L329
https://github.com/fluxcd/source-controller/blob/main/controllers/helmchart_controller.go#L657

7.12 Issue 12: Unhandled error

Severity Low

Difficulty High

Target image-automation-controller/controllers/imageupdateautomation_controller.go

Finding ID ADA-FLUX-21-12

7.12.1 Description
Unhandled error in the image-automation controller, despite the error being assigned to a
variable, which can lead to undefined behaviour.

var signingEntity *openpgp.Entity

if gitSpec.Commit.SigningKey != nil {

signingEntity, err = r.getSigningEntity(ctx, auto)

}

7.12.2 Recommendation
We propose to change the above code to the following:

var signingEntity *openpgp.Entity

if gitSpec.Commit.SigningKey != nil {

if signingEntity, err = r.getSigningEntity(ctx, auto); err != nil {

return failWithError(err)

}

}

© 2021 Ada Logics Ltd.
35

7.13 Issue 13: Slice bounds out of range

Severity Low

Difficulty High

Target https://github.com/fluxcd/image-automation-controller/blob/main/pkg/update/sett
ers.go#L162

Finding ID ADA-FLUX-21-13

7.13.1 Description
An issue was found by the FuzzUpdateWithSetters fuzzer of the
image-automation-controller. The following stack trace is produced after a few minutes of
fuzzing:

panic: runtime error: slice bounds out of range [:-4]

goroutine 17 [running, locked to thread]:

github.com/fluxcd/image-automation-controller/pkg/update.UpdateWithSetters(0x270

4df0, 0x3bd17d0, 0xc0001b70b0, 0x17, 0xc0001b7188, 0x17, 0xc00034f680, 0x1, 0x1,

0x0, ...)

/image-automation-controller/pkg/update/setters.go:162 +0x12e9

github.com/fluxcd/image-automation-controller/controllers.FuzzUpdateWithSetters(

0x5922c00, 0x17f, 0x17f, 0x0)

/image-automation-controller/controllers/fuzz.go:388 +0x65b

main.LLVMFuzzerTestOneInput(0x5922c00, 0x17f, 0x4b0001)

github.com/fluxcd/image-automation-controller/controllers/go.fuzz.main/main.go:3

5 +0x66

==8== ERROR: libFuzzer: deadly signal

#0 0x4b20d0 in __sanitizer_print_stack_trace

(/fuzzers/FuzzUpdateWithSetters+0x4b20d0)

#1 0x45da28 in fuzzer::PrintStackTrace()

(/fuzzers/FuzzUpdateWithSetters+0x45da28)

#2 0x443a63 in fuzzer::Fuzzer::CrashCallback()

(/fuzzers/FuzzUpdateWithSetters+0x443a63)

#3 0x7fd3900c38df (/lib/x86_64-linux-gnu/libpthread.so.0+0x138df)

#4 0x521ca0 in runtime.raise runtime/sys_linux_amd64.s:163

NOTE: libFuzzer has rudimentary signal handlers.

Combine libFuzzer with AddressSanitizer or similar for better crash

reports.

SUMMARY: libFuzzer: deadly signal

MS: 2 CrossOver-InsertByte-; base unit: a00037129c43765719c94c4c994e5652daa461b8

artifact_prefix='./'; Test unit written to

./crash-e93c32a8ad39fe95da43be27e31c5fb4d720efb9

The issue is present on this line:

© 2021 Ada Logics Ltd.
36

https://github.com/fluxcd/image-automation-controller/blob/main/pkg/update/setters.go#L162

name := image[:len(image)-len(tag)-1]

7.13.2 Recommendation
Fix the issue by checking the length of the image and tag.

© 2021 Ada Logics Ltd.
37

7.14 Issue 14: Possible nil-deref in image-automation controller

Severity Low

Difficulty High

Target https://github.com/fluxcd/image-automation-controller/blob/main/controllers/ima
geupdateautomation_controller.go

Finding ID ADA-FLUX-21-14

7.14.1 Description
A possible nil-pointer dereference exists in the image update automation controller. Consider
the following code:

if rev, err := commitChangedManifests(tracelog, repo, tmp, signingEntity, author,

messageBuf.String()); err != nil {

if err == errNoChanges {

r.event(ctx, auto, events.EventSeverityInfo, "no updates made")

debuglog.Info("no changes made in working directory; no commit")

statusMessage = "no updates made"

if lastCommit, lastTime := auto.Status.LastPushCommit,

auto.Status.LastPushTime; lastCommit != "" {

statusMessage = fmt.Sprintf("%s; last commit %s at %s",

statusMessage, lastCommit[:7], lastTime.Format(time.RFC3339))

}

} else {

return failWithError(err)

}

}

When the lastTime.Format is called it is not certain that lastTime is not a nil-pointer. As
such, similar to a check on lastCommit there should be a check on whether lastTime is nil.

7.14.2 Recommendation
We did not pursue a proof-of-concept for this potential bug due to timing constraints, but
recommend for the developers to review the issue as through our analysis it is triggerable.

© 2021 Ada Logics Ltd.
38

7.15 Issue 15: Inconsistent code-styles and potential
nil-dereferences

Severity Informational

Difficulty N/A

Target Controllers

Finding ID ADA-FLUX-21-15

7.15.1 Description
Flux is composed of projects across different repositories and there is often similar logic
happening across the controllers but performed in quite different ways. This leads to a more
complex overall codebase and can make it difficult to reason about properties of the code.

Event recording and checking status of similar elements in the controllers is performed
differently. This came up as an issue through fuzzing due to nil-pointer dereferences. Each of
the controllers rely on an EventRecoder, and the way these EventRecorder variables are
used differs between the controllers. Some controllers check for nil-status and others do not.
The HelmRelease reconciler and the Kustomization reconciler assume that the
EventRecorder is not nil in their respective event() implementations, whereas the other
controls do not:

Helm Release Reconciler
https://github.com/fluxcd/helm-controller/blob/main/controllers/helmrelease_controller.go#L7
39

func (r *HelmReleaseReconciler) event(ctx context.Context, hr

v2.HelmRelease, revision, severity, msg string) {

r.EventRecorder.Event(&hr, "Normal", severity, msg)

objRef, err := reference.GetReference(r.Scheme, &hr)

if err != nil {

logr.FromContext(ctx).Error(err, "unable to send event")

return

}

Kustomize Reconciler
https://github.com/fluxcd/kustomize-controller/blob/main/controllers/kustomization_controller.
go#L788

func (r *KustomizationReconciler) event(ctx context.Context,

kustomization kustomizev1.Kustomization, revision, severity, msg string,

metadata map[string]string) {

log := logr.FromContext(ctx)

r.EventRecorder.Event(&kustomization, "Normal", severity, msg)

© 2021 Ada Logics Ltd.
39

https://github.com/fluxcd/helm-controller/blob/main/controllers/helmrelease_controller.go#L739
https://github.com/fluxcd/helm-controller/blob/main/controllers/helmrelease_controller.go#L739
https://github.com/fluxcd/kustomize-controller/blob/main/controllers/kustomization_controller.go#L788
https://github.com/fluxcd/kustomize-controller/blob/main/controllers/kustomization_controller.go#L788

objRef, err := reference.GetReference(r.Scheme, &kustomization)

if err != nil {

log.Error(err, "unable to send event")

return

}

Image Update Automation Reconciler
https://github.com/fluxcd/image-automation-controller/blob/main/controllers/imageupdateauto
mation_controller.go#L732

func (r *ImageUpdateAutomationReconciler) event(ctx context.Context,

auto imagev1.ImageUpdateAutomation, severity, msg string) {

if r.EventRecorder != nil {

r.EventRecorder.Event(&auto, "Normal", severity, msg)

}

Git Repository Reconciler
https://github.com/fluxcd/source-controller/blob/main/controllers/gitrepository_controller.go#L
427

func (r *GitRepositoryReconciler) event(ctx context.Context, repository

sourcev1.GitRepository, severity, msg string) {

log := logr.FromContext(ctx)

if r.EventRecorder != nil {

r.EventRecorder.Eventf(&repository, "Normal", severity, msg)

}

Recommendation
The same code pattern should be used across the controllers. Through our analysis we
determined the EventRecorder cannot be nil using the current main.go files and thus the nil
check should be removed.

© 2021 Ada Logics Ltd.
40

https://github.com/fluxcd/image-automation-controller/blob/main/controllers/imageupdateautomation_controller.go#L732
https://github.com/fluxcd/image-automation-controller/blob/main/controllers/imageupdateautomation_controller.go#L732
https://github.com/fluxcd/source-controller/blob/main/controllers/gitrepository_controller.go#L427
https://github.com/fluxcd/source-controller/blob/main/controllers/gitrepository_controller.go#L427

7.16 Issue 16: Missing return statement after error

Severity Low

Difficulty High

Target image-automation-controller/controllers/imageupdateautomation_controller.go

Finding ID ADA-FLUX-21-16

7.16.1 Description
In the Image-automation reconciler an issue is present where the code continues after an
error occurs, leading to undefined behaviour:

// Here's where it gets constrained. If there's no push branch

// given, then the checkout ref must include a branch, and

// that can be used.

if ref.Branch == "" {

failWithError(fmt.Errorf("Push branch not given explicitly, and

cannot be inferred from .spec.git.checkout.ref or GitRepository

.spec.ref"))

}

pushBranch = ref.Branch

tracelog.Info("using push branch from $ref.branch", "branch",

pushBranch)

The problem is that the failWithError branch does not itself return from the reconcile function
and the code should instead be return failWithError

7.16.2 Recommendation
Change the code to return failWithError

© 2021 Ada Logics Ltd.
41

7.17 Issue 17: File extension comparisons are case sensitive

Severity Low

Difficulty High

Target https://github.com/fluxcd/kustomize-controller/blob/main/controllers/kust
omization_generator.go#L195-L197

Finding ID ADA-FLUX-21-17

7.17.1 Description
In the lines
https://github.com/fluxcd/kustomize-controller/blob/main/controllers/kustomization_generator.
go#L195-L197

A check happens on the file extension for YAML files:

extension := filepath.Ext(path)

if !containsString([]string{".yaml", ".yml"}, extension) {

return nil

However, the check is case sensitive. We recommend either documenting this or allowing
file extensions that are not purely limited to lowercase extensions. The problem is if a user
configures their set up with yaml files based on different syntactic extensions they will
suspect their yaml files to erroneously assume their files are used.

7.17.2 Recommendation
Normalise file extensions when processing them to allow uppercase letters in extensions or
clarify that files must be lowercase.

© 2021 Ada Logics Ltd.
42

https://github.com/fluxcd/kustomize-controller/blob/main/controllers/kustomization_generator.go#L195-L197
https://github.com/fluxcd/kustomize-controller/blob/main/controllers/kustomization_generator.go#L195-L197
https://github.com/fluxcd/kustomize-controller/blob/main/controllers/kustomization_generator.go#L195-L197
https://github.com/fluxcd/kustomize-controller/blob/main/controllers/kustomization_generator.go#L195-L197

7.18 Issue 18: Some dependencies are outdated

Severity Informational

Difficulty N/A

Target N/A

Finding ID ADA-FLUX-21-18

7.18.1 Description
Some of the dependencies of various go modules are not up to date and archived. This
includes:

Name & fluxcd
version

Import location Flux version Latest upstream
tag

Go-retryablehttp https://github.com/fluxcd/kustomize-controller/bl
ob/74f08c3f1b3ec8ab8725c7775da8d3290399
6835/go.mod#L19

v0.6.8 0.7.0

go-grpc https://github.com/fluxcd/kustomize-controller/bl
ob/74f08c3f1b3ec8ab8725c7775da8d3290399
6835/go.mod#L27

v1.38.0 v1.41.0

howeyc/gopass https://github.com/fluxcd/kustomize-controller/bl
ob/74f08c3f1b3ec8ab8725c7775da8d3290399
6835/go.mod#L20

v.0.0.0-2 Archived

filippio.io/age https://github.com/fluxcd/kustomize-controller/bl
ob/74f08c3f1b3ec8ab8725c7775da8d3290399
6835/go.mod#L8

v1.0.0-beta7 v1.0.0.0

minio-go https://github.com/fluxcd/source-controller/blob/
d7afc3596bdfc3818ed8987db029bea8a461c62
c/go.mod#L24

v7.0.10 v7.0.14

sigs.k8s.io/contr
oller-runtime

https://github.com/fluxcd/source-controller/blob/
d7afc3596bdfc3818ed8987db029bea8a461c62
c/go.mod#L35

v0.9.5 v0.10.1

sigs.k8.io/yaml https://github.com/fluxcd/kustomize-controller/bl
ob/74f08c3f1b3ec8ab8725c7775da8d3290399
6835/go.mod#L35

v1.2.0 v1.3.0

go-limiter https://github.com/fluxcd/notification-controller/b
lob/8ff5f75a255d7dd0677590510ab1abf1d33b4
f85/go.mod#L25

v0.6.0 v0.7.2

© 2021 Ada Logics Ltd.
43

https://github.com/fluxcd/kustomize-controller/blob/74f08c3f1b3ec8ab8725c7775da8d32903996835/go.mod#L19
https://github.com/fluxcd/kustomize-controller/blob/74f08c3f1b3ec8ab8725c7775da8d32903996835/go.mod#L19
https://github.com/fluxcd/kustomize-controller/blob/74f08c3f1b3ec8ab8725c7775da8d32903996835/go.mod#L19
https://github.com/fluxcd/kustomize-controller/blob/74f08c3f1b3ec8ab8725c7775da8d32903996835/go.mod#L27
https://github.com/fluxcd/kustomize-controller/blob/74f08c3f1b3ec8ab8725c7775da8d32903996835/go.mod#L27
https://github.com/fluxcd/kustomize-controller/blob/74f08c3f1b3ec8ab8725c7775da8d32903996835/go.mod#L27
https://github.com/fluxcd/kustomize-controller/blob/74f08c3f1b3ec8ab8725c7775da8d32903996835/go.mod#L20
https://github.com/fluxcd/kustomize-controller/blob/74f08c3f1b3ec8ab8725c7775da8d32903996835/go.mod#L20
https://github.com/fluxcd/kustomize-controller/blob/74f08c3f1b3ec8ab8725c7775da8d32903996835/go.mod#L20
https://github.com/fluxcd/kustomize-controller/blob/74f08c3f1b3ec8ab8725c7775da8d32903996835/go.mod#L8
https://github.com/fluxcd/kustomize-controller/blob/74f08c3f1b3ec8ab8725c7775da8d32903996835/go.mod#L8
https://github.com/fluxcd/kustomize-controller/blob/74f08c3f1b3ec8ab8725c7775da8d32903996835/go.mod#L8
https://github.com/fluxcd/source-controller/blob/d7afc3596bdfc3818ed8987db029bea8a461c62c/go.mod#L24
https://github.com/fluxcd/source-controller/blob/d7afc3596bdfc3818ed8987db029bea8a461c62c/go.mod#L24
https://github.com/fluxcd/source-controller/blob/d7afc3596bdfc3818ed8987db029bea8a461c62c/go.mod#L24
https://github.com/fluxcd/source-controller/blob/d7afc3596bdfc3818ed8987db029bea8a461c62c/go.mod#L35
https://github.com/fluxcd/source-controller/blob/d7afc3596bdfc3818ed8987db029bea8a461c62c/go.mod#L35
https://github.com/fluxcd/source-controller/blob/d7afc3596bdfc3818ed8987db029bea8a461c62c/go.mod#L35
https://github.com/fluxcd/kustomize-controller/blob/74f08c3f1b3ec8ab8725c7775da8d32903996835/go.mod#L35
https://github.com/fluxcd/kustomize-controller/blob/74f08c3f1b3ec8ab8725c7775da8d32903996835/go.mod#L35
https://github.com/fluxcd/kustomize-controller/blob/74f08c3f1b3ec8ab8725c7775da8d32903996835/go.mod#L35
https://github.com/fluxcd/notification-controller/blob/8ff5f75a255d7dd0677590510ab1abf1d33b4f85/go.mod#L25
https://github.com/fluxcd/notification-controller/blob/8ff5f75a255d7dd0677590510ab1abf1d33b4f85/go.mod#L25
https://github.com/fluxcd/notification-controller/blob/8ff5f75a255d7dd0677590510ab1abf1d33b4f85/go.mod#L25

Using outdated versions may result in vulnerabilities in the event of lacking security updates
and bug fixes. In this case we did not investigate further if any of the versions were updated
due to security issues.

7.18.2 Recommendation
We recommend in the short term to update the packages and in the long term to ensure all
dependencies are up to date by using automated dependency checking.

© 2021 Ada Logics Ltd.
44

7.19 Issue 19: Lack of container security options in deployed
pods

Severity Low

Difficulty High

Target Flux controllers

Finding ID ADA-FLUX-21-19

7.19.1 Description
The Deployments of the Flux controllers lack container security options that mitigate
privilege escalation risks. These are hardening options that we recommend using and Flux
already makes use of allowPrivilegeEscalation: falseallowPrivilegeEscalation:

false on all of its controllers. However, in addition to the allowPrivilegeEscalation

option Flux could harden its containers by:
● Dropping all Linux capabilities and enabling those needed
● Filtering syscalls by way of Seccomp

Docker drops many Linux capabilities by default but keeps others for convenience. Flux can
harden its containers by having Docker drop all privileges a root user’s process can perform
on a system and enabling only those needed. See here for details.

Seccomp filtering is a way of limiting the available system calls and as of v1.19 Kubernetes
has support for specifying Seccomp policies through the use of seccompProfile in the
securityContext of pods. Please see here for details.

7.19.2 Recommendation
Ensure that the pod deployed by Flux has appropriate hardening applied through the use of
dropping Linux capabilities and syscall filtering.

© 2021 Ada Logics Ltd.
45

https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#seccomp

7.20 Issue 20: Unhandled errors from deferred file close
operations

Severity Low

Difficulty High

Target ./source-controller/controllers/storage.go
./source-controller/pkg/sourceignore/sourceignore.go
./kustomize-controller/controllers/kustomization_impersonation.go
./kustomize-controller/internal/sops/pgp/keysource.go

Finding ID ADA-FLUX-21-20

7.20.1 Description
Throughout the codebase there are places where file close operations are deferred within a
function where a file is being written to, e.g:

localPath := s.LocalPath(*artifact)

f, err := os.Open(localPath)

if err != nil {

return err

}

defer f.Close()

// untar the artifact

untarPath := filepath.Join(tmp, "unpack")

if _, err = untar.Untar(f, untarPath); err != nil {

return err

}

This can lead to undefined behaviour since any errors returned by the f.Close() operation
are ignored. This can have consequences in the event a close operation fails and the data
has not yet been flushed to the file, which the rest of the code will assume it to be. For a
detailed discussion on this, please see here.

7.20.2 Recommendation
Ensure that errors from f.Close() are handled.

© 2021 Ada Logics Ltd.
46

https://www.joeshaw.org/dont-defer-close-on-writable-files/

7.21 Issue 21: x509 certificates are not used for Webex

Severity Medium

Difficulty High

Target notification-controller/internal/notifier/webex.go

Finding ID ADA-FLUX-21-21

7.21.1 Description
In the alert-controller the Webex hook takes an x509 certificate as argument but does not
use it here:

// NewWebex validates the Webex URL and returns a Webex object

func NewWebex(hookURL, proxyURL string, certPool *x509.CertPool)

(*Webex, error) {

_, err := url.ParseRequestURI(hookURL)

if err != nil {

return nil, fmt.Errorf("invalid Webex hook URL %s", hookURL)

}

return &Webex{

URL: hookURL,

ProxyURL: proxyURL,

}, nil

}

This is despite the certPool being used by the Webex notifier here:

if err := postMessage(s.URL, s.ProxyURL, s.CertPool, payload); err !=

nil {

return fmt.Errorf("postMessage failed: %w", err)

}

7.21.2 Recommendation
Ensure certificate is used or clarify why it is not in the documentation.

© 2021 Ada Logics Ltd.
47

https://github.com/fluxcd/notification-controller/blob/8ff5f75a255d7dd0677590510ab1abf1d33b4f85/internal/notifier/webex.go#L42-L52
https://github.com/fluxcd/notification-controller/blob/8ff5f75a255d7dd0677590510ab1abf1d33b4f85/internal/notifier/webex.go#L76-L78

7.22 Issue 22: Unnecessary conditions in the code

Severity Informational

Difficulty N/A

Target https://github.com/fluxcd/image-automation-controller/blob/7ec4e6150ee0b6f47
70a3265161cd98108c06603/controllers/imageupdateautomation_controller.go#
L253-L264

Finding ID ADA-FLUX-21-22

7.22.1 Description
In the following code, the auto.Spec.Update is not needed, and if indeed
auto.Spec.Update was nil then the first conditional statement would panic due to a
nil-dereference.

manifestsPath := tmp

if auto.Spec.Update.Path != "" {

tracelog.Info("adjusting update path according to

.spec.update.path", "base", tmp, "spec-path", auto.Spec.Update.Path)

if p, err := securejoin.SecureJoin(tmp, auto.Spec.Update.Path);

err != nil {

return failWithError(err)

} else {

manifestsPath = p

}

}

switch {

case auto.Spec.Update != nil && auto.Spec.Update.Strategy ==

imagev1.UpdateStrategySetters:

// For setters we first want to compile a list of _all_ the

7.22.2 Recommendation
Remove the unnecessary nil-pointer check code.

© 2021 Ada Logics Ltd.
48

